Lecture 5. Mutation. Migration and selection.

2.1 Mutation

One locus two alleles model: A wildtype, a mutant forward mutation rate μ per generation: $A \rightarrow a$ backward mutation rate ν : $a \rightarrow A$

Typically μ is about

 $10^{-4} - 10^{-6}$ mutations per gene per generation

 p_t = population frequency of allele A in generation t

Irreversible mutation

If $\nu = 0$, then pure loss of alleles A each generation $p_t = p_{t-1}(1 - \mu) = p_0(1 - \mu)^t \approx p_0 e^{-\mu t}$ Fig 5.1, p. 165: $p_t \to 0$ under mutation pressure

$$\Delta p = -p\mu$$
 incremental frequency $\Delta p = p_t - p_{t-1}$

Half-life of an allele

The number of generations taking to halve the wildtype allele frequency $t_{0.5} = \frac{\ln 2}{\mu} = \frac{0.693}{\mu}$ solves equation $p_t = 0.5 \cdot p_0$ If $\mu = 10^{-4}$, the half-life is $t_{0.5} = 6,930$ generations if $\mu = 10^{-6}$, the half-life is $t_{0.5} = 693,000$ generations

Ex 1: mutation rate estimation

Fig 5.3, p. 167: infection resistance gene in E.coliif the cumulative mutation rate μt is small, then $p_t \approx p_0(1 - \mu t)$; if moreover $p_0 \approx 1$, then $q_t \approx q_0 + \mu t$

Ex 2: transposon deletion

D. mauritania, a site with transposon mariner insertion spontaneous deletion at rate $\mu=0.01$: $A\to a$

If, $D_0 = 1$, find t needed to reach $R_t = 0.05$: assuming random mating $q_t = \sqrt{R_t} = 0.224$ linear approximation $q_t = 0.01 \cdot t$ gives t = 23exact formula $q_t = 1 - (0.99)^t$ gives t = 26 generations

Reversible mutation

If $\mu > 0$ and $\nu > 0$, then the allele A loss and gain interplay: $p_t = p_{t-1}(1 - \mu) + q_{t-1}\nu = p_{t-1}(1 - \mu - \nu) + \nu$ $\Delta p = -p(\mu + \nu) + \nu$

Equlibrium frequency
$$\hat{p} = \frac{\nu}{\mu + \nu}$$
 solves $\Delta p = 0$
 $p_t = \hat{p} + (p_0 - \hat{p})(1 - \mu - \nu)^t$
Fig 5.4, p. 169
 $\mu = 10^{-4}$, $\nu = 10^{-5}$, $\hat{p} = 0.091$

Ex 3: intrachromosomal recombination

Salmonella bacterium:

switching between two forms of flagella due to an intrachromosomal recombination switching rates are high: $\mu = 8.6 \cdot 10^{-4}$, $\nu = 4.7 \cdot 10^{-3}$ Observed results for two Salmonella cultures

Expected frequencies

1:
$$p_t = 0.845(1 - (0.994)^t)$$
, $p_{30} = 0.13$, $p_{700} = 0.83$
2: $p_t = 0.845 + 0.155(0.994)^t$, $p_{388} = 0.86$, $p_{700} = 0.85$
Expected equlibrium frequency $\hat{p} = 0.845$

2.2 Migration

Immigration rate m into a subpopulation = the subpopulation proportion quota for new immigrants arriving each generation

If m = 0.05, then 5% of the subpopulation individuals have immigrated during the last generation period

One-way migration

Fig 5.14, p. 190: mainland to island migration mainland frequencies are fixed p^* , q^*

Island frequencies change

$$p_t = (1 - m)p_{t-1} + mp^*$$

= {non-imm. with A} + {immigrants with A}

$$\Delta p = -pm + mp^*$$

Convergence to the mainland frequency

$$p_t = p^* + (1 - m)^t (p_0 - p^*)$$
 so that $p_t \to p^*$

Island model of migration

- p_t = allele A frequency in a certain subpopulation
- \bar{p} = allele A frequency in the metatpopulation constant over time

The same dynamics as with mainland to island migration $p_t = (1 - m')p_{t-1} + m'\bar{p}$, where $m' = m \cdot \frac{n}{n-1}$

Gene flow eliminates differences among subpopulations

$$p_t = \bar{p} + (1 - m')^t (p_0 - \bar{p})$$
 so that $p_t \to \bar{p}$

Fig 5.16, p.194

evolution similar to reversible mutation difference in rates: $m \gg \mu$

2.3 Selection

Haploid selection

Absolute fitnesses W_A , W_a

= offspring numbers for two bacteria strains A and a

Fig 6.1, p. 213: two potential growth rates

Carrying capacity of the habitat is limited

focus on the allele competition within a population relative fitnesses $w_A: w_a = W_A: W_a$

$$w_A = 1$$
, $w_a = 1 - s$, haploid selection coefficient s

Two potential growth rates

 $X_t = X_{t-1}W_A$ number of alleles A in generation t

 $Y_t = Y_{t-1}W_a$ number of alleles a in generation t

Allele frequencies

$$\begin{array}{l} p_t = \frac{X_t}{X_t + Y_t}, \, q_t = \frac{Y_t}{X_t + Y_t} \quad \text{odds ratio } \frac{p_t}{q_t} = \frac{X_t}{Y_t} \\ \frac{p_t}{q_t} = \frac{p_{t-1}}{q_{t-1}} (1 - s)^{-1} = \frac{p_0}{q_0} (1 - s)^{-t} \\ p_t = \frac{p_0}{p_0 + q_0 (1 - s)^t} \end{array}$$

Haploid selection
$$\Delta p = spq$$
, if $s \approx 0$

Fixation of the favored allele

$$p_t \to 1$$
 if $s > 0$ and $p_t \to 0$ if $s < 0$ as $t \to \infty$

Estimate s using linear regression

$$\begin{array}{l} \ln(\frac{p_t}{q_t}) = \ln(\frac{p_0}{q_0}) - t \ln(1-s) \text{ or } \\ \ln(\frac{p_t}{q_t}) = \ln(\frac{p_0}{q_0}) + st, \text{ if } s \approx 0 \end{array}$$

Diploid selection

genotype
$$AA$$
 Aa aa relative fitness w_{AA} w_{Aa} w_{aa}

Three types of the diploid selection

directional selection:

$$w_{AA} > w_{Aa} > w_{aa}$$
 or $w_{AA} < w_{Aa} < w_{aa}$
overdominance: $w_{Aa} > w_{AA}$ and $w_{Aa} > w_{aa}$
stabilizing selection against homozygotes
underdominance: $w_{Aa} < w_{AA}$ and $w_{Aa} < w_{aa}$
disruptional selection against heterozygotes
Biological components of human fitness
survival to maturity, mating success, and fertility

Two stage life history model adults → random mating → newborns → adults fitness is proportional to P(Survival to maturity)

Genotype frequencies

in adults (D, H, R) and newborns (d, h, r)

From newborns to adults survival to maturity

$$D: H: R = dw_{AA}: hw_{Aa}: rw_{aa}$$

From adults to next generation newborns

random mating $d_{\text{next}} = p^2$, $h_{\text{next}} = 2pq$, $r_{\text{next}} = q^2$

Two relations combined

$$D_{
m next} = p^2 rac{w_{AA}}{\bar{w}}, \, H_{
m next} = 2pq rac{w_{Aa}}{\bar{w}}, \, R_{
m next} = q^2 rac{w_{aa}}{\bar{w}}$$

Average fitness $\bar{w} = p^2 w_{AA} + 2pqw_{Aa} + q^2 w_{aa}$

is close to one if selection is weak

$$\Delta p = \frac{pq}{\bar{w}}(p(w_{AA} - w_{Aa}) + q(w_{Aa} - w_{aa}))$$

Literature:

- 1. D.L.Hartl, A.G.Clarc. Principle of population genetics. Sinauer Associates, 2007.
- 2. R.Nielson, M. Statkin. An introduction to population genetics: theory and applications, Sinauer Associates. 2013.